Ela Binary Ranks and Binary Factorizations of Nonnegative Integer Matrices
نویسنده
چکیده
Abstract. A matrix is binary if each of its entries is either 0 or 1. The binary rank of a nonnegative integer matrix A is the smallest integer b such that A = BC, where B and C are binary matrices, and B has b columns. In this paper, bounds for the binary rank are given, and nonnegative integer matrices that attain the lower bound are characterized. Moreover, binary ranks of nonnegative integer matrices with low ranks are determined, and binary ranks of nonnegative integer Jacobi matrices are estimated.
منابع مشابه
Binary ranks and binary factorizations of nonnegative integer matrices
A matrix is binary if each of its entries is either 0 or 1. The binary rank of a nonnegative integer matrix A is the smallest integer b such that A = BC, where B and C are binary matrices, and B has b columns. In this paper, bounds for the binary rank are given, and nonnegative integer matrices that attain the lower bound are characterized. Moreover, binary ranks of nonnegative integer matrices...
متن کاملNonnegative Rank vs. Binary Rank
Motivated by (and using tools from) communication complexity, we investigate the relationship between the following two ranks of a 0-1 matrix: its nonnegative rank and its binary rank (the log of the latter being the unambiguous nondeterministic communication complexity). We prove that for partial 0-1 matrices, there can be an exponential separation. For total 0-1 matrices, we show that if the ...
متن کاملEla on Nonnegative Sign Equivalent and Sign Similar Factorizations of Matrices∗
Dedicated to Hans Schneider on the occasion of his eightieth birthday Abstract. It is shown that every real n×n matrix is a product of at most two nonnegative sign equivalent matrices, and every real n × n matrix, n ≥ 2, is a product of at most three nonnegative sign similar matrices. Finally, it is proved that every real n×n matrix is a product of totally positive sign equivalent matrices. How...
متن کاملNonnegative Ranks, Decompositions, and Factorizations of Nonnegative Matrices
The nonnegative rank of a nonnegative matrix is the smallest number of nonnegative rank-one matrices into which the matrix can be decomposed additively. Such decompositions are useful in diverse scientific disciplines. We obtain characterizations and bounds and show that the nonnegative rank can be computed exactly over the reals by a finite algorithm.
متن کاملBiclique coverings of regular bigraphs and minimum semiring ranks of regular matrices
We study the minimum number of complete bipartite subgraphs needed to cover and partition the edges of a k-regular bigraph on 2n vertices. Bounds are determined on the minima of these numbers for fixed n and k. Exact values of the minima are found for all n and k 6 4. The same results hold for directed graphs. Equivalently, we have determined bounds on the minimum value of the Boolean and nonne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012